2D Supramolecular networks of dibenzonitrilediacetylene on Ag(111) stabilized by intermolecular hydrogen bonding.
نویسندگان
چکیده
The two-dimensional (2D) surface-directed self-assembly of dibenzonitrile diacetylene (DBDA) on Ag(111) under ultrahigh vacuum (UHV) conditions was investigated by combining scanning tunneling microscopy (STM), X-ray photoelectron spectroscopy (XPS) and theoretical simulations based on density functional theory (DFT) calculations. The molecule consists of two benzonitrile groups (-C6H4-C[triple bond, length as m-dash]N) on each side of a diacetylene (-C[triple bond, length as m-dash]C-C[triple bond, length as m-dash]C-) backbone. The terminating nitrile (-C[triple bond, length as m-dash]N) groups at the meta position of the phenyl rings lead to cis and trans stereoisomers. The trans isomer is prochiral and can adsorb in the R or S configuration, leading to the formation of enantiomeric self-assembled networks on the surface. We identify two simultaneously present supramolecular networks, termed parallel and chevron phases, as well as a less frequently observed butterfly phase. These networks are formed from pure R (or S) domains, racemic mixtures (RS), and cis isomers, respectively. Our complementary data illustrates that the formation of the 2D supramolecular networks is driven by intermolecular hydrogen bonding between nitrile and phenyl groups (-C[triple bond, length as m-dash]NH-C6H3). This study illustrates that the molecular arrangement of each network depends on the geometry of the isomers. The orientation of the nitrile group controls the formation of the most energetically stable network via intermolecular hydrogen bonding.
منابع مشابه
Amine-Directed Hydrogen-Bonded Two-Dimensional Supramolecular Structures.
Utilizing pure amine hydrogen bonding is a novel approach for constructing two-dimensional (2D) networks. Further, such systems are capable of undergoing structural modifications due to changes in pH. In this study, we designed a 2D network of triaminobenzene (TAB) molecules that by varying the pH from neutral to acidic, form either ordered or disordered structures on Au(111) surface as reveale...
متن کاملSelf-assembly of melem on Au(111) and Ag(111): the origin of two different hydrogen bonding configurations.
We studied the self-assembly of melem on the Au(111) and Ag(111) surfaces. By scanning tunneling microscopy imaging, we observed two different STM appearances of the melem molecule within the self-assembled nanostructure on Au(111), which resulted from the different intermolecular bonding configurations. Moreover, further DFT details including the intermolecular charge density difference and bo...
متن کاملQuinacridone on Ag(111): Hydrogen Bonding versus Chirality
Quinacridone (QA) has recently gained attention as an organic semiconductor with unexpectedly high performance in organic devices. The strong intermolecular connection via hydrogen bonds is expected to promote good structural order. When deposited on a substrate, another relevant factor comes into play, namely the 2D-chirality of the quinacridone molecules adsorbed on a surface. Scanning tunnel...
متن کاملProgramming supramolecular assembly and chirality in two-dimensional dicarboxylate networks on a Cu(100) surface.
We report a comparative study on the 2D self-assembly of two related ditopic benzoic acid species, which have similar shape and endgroups but different backbone symmetry. High-resolution scanning tunneling microscopy data reveal how the symmetry information of molecular building blocks is readily expressed in the resulting chiral or nonchiral supramolecular networks. The underlying square Cu(10...
متن کاملWater-induced reversible structural phase transformation with chromotropism in metal supramolecular frameworks containing aminopyrazine and sulfate anions.
Three new supramolecular metal-coordination architectures [M(H2O)4(ampyz)2][M(H2O)6](SO4)2(H2O)2 (M = Co (1), Fe (2), and mixed Co/Fe (3); ampyz = 2-aminopyrazine) and a Cd(II) coordination polymer [Cd(ampyz)(H2O)2(SO4)]n(H2O)n (4) were synthesized by layered diffusion and structurally characterized. Compounds 1-3 are isomorphous. Monomeric complex units [M(H2O)4(ampyz)2]2+ are assembled by int...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 19 16 شماره
صفحات -
تاریخ انتشار 2017